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Crossover from fragile to strong glassy behavior in kinetically constrained systems
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We show the existence of fragile-to-strong transitions in kinetically constrained systems by studying the
equilibrium and out-of-equilibrium dynamics of a generic constrained Ising spin chain that interpolates be-
tween the symmetric and fully asymmetric cases. We find that for large but finite asymmetry the model
displays a crossover from fragile to strong glassy behavior at finite temperature, which is controlled by the
asymmetry parameter. The relaxation in the fragile region presents stretched exponential behavior, with a
temperature dependent stretching exponent that is predicted. Our results are confirmed by numerical simula-
tions.
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Glasses are everywhere in nature. It is difficult to find
liquid that when supercooled does not form the amorpho
microscopically disordered solid we call a glass. The sali
feature of supercooled liquids is their dramatical slowi
down with decreasing temperature, signaled by the incre
of their relaxation times and viscosities by several orders
magnitudes in a temperature range of a few decades.
reviews see Refs.@1–3#.

Given the generic nature of the glassy state, unive
principles for the classification of glass-forming materials
of paramount importance. Central to this is the concep
fragility @4,1#, which measures the speed with which visco
ity and relaxation times grow as a system approaches
glass transition temperature. Liquids that display Arrhen
behavior, that is, the logarithm of their viscosity or relaxati
time grows linearly with inverse temperature, are classifi
as ‘‘strong’’ @4,1#, as, for example, network liquids like SiO2
and GeO2, and define one of the extremes of the classifi
tion by fragility. Most liquids, however, behave in a no
Arrhenius manner, and the larger the departure from Arrh
ius behavior, the more ‘‘fragile’’@4,1#, the most fragile
liquids, which define the second extreme in fragility, bei
polymeric in nature. An exception to this classification
supercooled water@5#: at temperatures close to its meltin
point it behaves as extremely fragile, while near the gl
transition it is very strong. Supercooled water has a frag
to-strong transition.

Some of the simplest systems that display the slow co
erative relaxation characteristic of glasses are the facilita
kinetic Ising models, first introduced by Fredrickson a
Andersen@6#, in which glassiness is not a consequence
either disorder or frustration in the interactions, but of t
presence of kinetic constraints in the dynamics of the syst
Depending on whether the constraints are isotropic@6#, or
fully directed @7#, these models may behave as strong
fragile glasses, and the low temperature dynamics can
understood in terms of activation over energy barri
@8–11#. They are particularly useful in the study of activat
processes, which become highly relevant for supercooled
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uids near the glass transition, but are not taken into acco
by approximations like mode-coupling theory@12# or mean-
field models@13,14#.

The purpose of this paper is to show that fragile-to-stro
transitions also occur in kinetically constrained systems.
prove this for the simplest case of the one spin facilita
Ising chain. We study a generalization of the kinetically co
strained Ising chain that interpolates between the case
symmetric@6# and fully asymmetric constraints@7#. We show
that for large but finite asymmetry the model displays
fragile-to-strong crossover at finite temperature. The cro
over temperature is controlled by the asymmetry parame
which also determines the largest time scale and energy
rier of the problem. The relaxation in the fragile region pr
sents stretched exponential behavior, with a temperature
pendent stretching exponent that is obtained analytically.
performed extensive numerical simulations to confirm o
results.

We consider a chain of Ising spinss iP$0,1% ( i
51, . . . ,N), with periodic boundary conditions, and Hami
tonianH5( is i . The dynamics is restricted to single flips o
spins that have at least one nearest neighbor in the up s
The rates for the possible transitions are in general differ
depending on whether the up neighbor is on the right or l
and are given by

11→
b

01, 01→
be

11, 11→
12b

10, 10 →
~12b!e

11, ~1!

where bP@0,1# and e[exp(21/T). Detailed balance is
obeyed, and the stationary distribution is the Boltzmann d
tribution at temperatureT for the HamiltonianH. The param-
eterb sets the degree of asymmetry of the kinetic constrai
The limiting valuesb51/2 andb50 ~or 1) correspond to
the Fredrickson-Andersen~FA! model @6# and the asym-
metrically constrained Ising chain~ACIC! @7#, respectively.

Due to the noninteracting nature of the Hamiltonian t
thermodynamical properties of the model are trivial, and
the same for anyb. The energy density is given by the con
centrationc of up spins~or ‘‘defects’’!, which in equilibrium
becomesceq5e/(11e). At low temperaturesc is very small,
and since defects facilitate the dynamics, the system sl
down: isolated up spins are locally stable and the system
to overcome energy barriers to evolve.
©2001 The American Physical Society05-1
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In contrast with the statics, the low temperature dynam
depends strongly on the value ofb ~except atT strictly zero
@11#!. In the symmetric limitb51/2, which corresponds to
the FA model, isolated defects can diffuse to the left~resp.
right! by means of processes~ii ! and ~iii ! @resp.~iv! and ~i!#
of Eq. ~1!. Each move requires the temporary creation of o
defect, so there is a single activation barrier to diffusi
DE51. This constancy of the energy barriers implies th
relaxation times follow the Arrhenius lawtFA;exp(DE/T),
characteristic of strong glass behavior@8,11#. The decay of
the concentration of up spins, in the out of equilibrium r
gime, is well approximated by the coagulation processA
1A→A, which means that the typical lengthscale grows
l;(t/t)1/2 @8#. The situation in the asymmetric limitb50 or
1, which corresponds to the ACIC model@7#, is very differ-
ent. Here the activated diffusion mechanism of the symm
ric case is absent: a defect at a distance 2n21,d<2n from
the nearest defect~in the direction of the constraint! has to
cross a barrierDE5n to move@10#, i.e., barriers grow with
the logarithm of the size of relaxing regions. This means t
typical length scales grow asl;tT ln 2, which leads to a re-
laxation time at low temperatures of the formtACIC
;exp(1/T2ln 2) @10#. This is the Ba¨ssler law@15,2# used as
an alternative to the Vogel-Fulcher equation@1,2# to repre-
sent fragile behavior. The absence of a finite tempera
singularity is consistent with the trivial statics of the ACI
model.

We now consider the behavior at intermediate values
the asymmetryb. We first focus on the relaxation toward
equilibrium after a quench from infinite temperature. Wheb
is not far from the symmetric limitb51/2, the rates of Eq
~1! for reactions to the left and right are comparable and
symmetric diffusive mechanism is still effective: the beha
ior is essentially that of the FA model. The region of lar
but finite asymmetry, that is, whenb ~or 12b) is small, is
more interesting. In this case rates~i! and ~ii ! of Eq. ~1! are
very much suppressed respect to rates~iii ! and ~iv! ~or vice
versa!, the system can only make use of the asymme
mechanism to relax, and behaves like the ACIC. The ti
scales associated with the asymmetric process, howe
grow as the relaxing regions become larger: the time s
for relaxation of a region of length 2n21,d<2n is tA

(n)

;e2n, and the dynamics takes place in stages labeled bn
@10#. The time scale for the symmetric process,tS;@b(1
2b)e#21, is large, but not infinite, except in the ACIC limi
and in contrast to the asymmetric one does not grow w
increasing length. This means that eventuallytS becomes
comparable totA

(n) for some value ofn. This defines the las
stage of asymmetric relaxationn* before the system
switches to symmetric behavior:

n* ;12T ln@b~12b!#. ~2!

In Fig. 1 we show the decay of defect concentrationc ~the
energy density of the system! as a function of timet after a
quench from an initial state atT05` to a low temperature
T51/6, for several values of the asymmetryb. For the b
50 ACIC limit, at least four plateaus in the concentrati
are visible, which correspond to the different stages in
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dynamics. The number of plateaus decreases with increa
b in accordance with Eq.~2!: there are three plateaus forb
51025(n* 52.9), two forb51024 and 1023 (n* 52.5 and
2.2), and only one forb51022 and 1/2 (n* 51.7 and 1.1),
the latter being the FA limit. The inset shows how the typic
length scalel[1/c grows with time. While in the ACIC case
it follows tT ln 2 ~lower dashed line!, for all the nonzero val-
ues ofb the system eventually switches to the diffusivet1/2

behavior of the FA case~upper dashed line!.
Let us turn to the implications that a finite asymmetry h

on the relaxation time of the system. For arbitraryb, the
symmetric and asymmetric processes compete. The re
ation time scale is given byt;(tS

211tACIC
21 )21, assuming

that the corresponding rates add up. The factorb(12b) in
the symmetric relaxation time scaletS can be interpreted a
an entropic barrier:tS;exp$@DE2T ln b(12b)#/T%, where
DE51. Notice that this ‘‘free energy’’ barrier is preciselyn*
of Eq. ~2!. Thus, the suppression of the symmetric mec
nism due tob decreases with decreasing temperature. T
consequence of this on the relaxation time for a fixed va
of b is the following. At higher temperatures the asymmet
process dominates,t;tACIC , and the system displays fragil
relaxation. At lower temperatures, the symmetric process
comes dominant,t;tS , and the behavior is strong. Th
crossover temperature for this fragile-to-strong transition
determined byb,

Tc;
12A124 ln@b~12b!#/ ln 2

2 ln@b~12b!#
~3!

corresponding totS;tACIC .

FIG. 1. Defect concentrationc as a function of timet after a
quench from infinite temperature toT51/6, for values of the asym-
metry b51/2 ~FA model!, 1022, 1023, 1024, 1025, and 0 ~ACIC
model!. Inset: typical length scalel[1/c against scaled time vari
ableT ln t. The upper dashed line corresponds tot1/2 and the lower
one totT ln 2. Simulations were performed using a continuous tim
Monte Carlo/Metropolis algorithm@16,17# for a system of 105

spins.
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In Fig. 2 we show the equilibrium relaxation timet as a
function of inverse temperature 1/T. Given that the static
properties of the system are known exactly it is simple
construct low temperature equilibrium configurations by ra
domly drawing each spin independently with the equilibriu
probabilitiesp(s)5(12s)(12ceq)1sceq. This allows to
study the equilibrium dynamics down to really low tempe
tures in contrast with most glassy systems where only ou
equilibrium quantities are accessible. We obtain the rel
ation time through the connected equilibrium autocorrelat
function, C(t)[N21( i^s i(t)s i(0)&2ceq

2 , where t is de-
fined byC(t)5e21C(0).Alternative definitions of the equi
librium relaxation time scale give similar results. The figu
shows the following features:~i! in theb50 ACIC limit, the
relaxation time has the fragile behaviortACIC for all tem-
peratures, as expected;~ii ! for small b, t crosses over from
fragile tACIC at higher temperatures to strongtS behavior at
lower ones, the crossover taking place aroundTc given by
Eq. ~3! ~see bottom-right panel of Fig. 2!; ~iii ! for largerb the
fragile region shrinks, and disappears completely at the
limit b51/2. The displacement of the curves in the stro
regime is due to the entropic barrier. Rescaling the relaxa
time byt→b(12b)t makes them collapse, as shown in t
top-right panel of Fig. 2. The bottom-right panel gives t
effective activation barrierDE[d ln t/d(1/T). The crossover
here appears as a change from the linear growth in the A
to the constant barrier of the FA model. The crossove
sharper the smallerb. The high temperature behavior oft is
exponential in 1/T, which gives the offset in the straight lin
for b50, and becomes irrelevant at low temperatures. T
slope ofDE is about 1.7 rather than 2/ln2. This difference
due to the nonexponential nature of the autocorrelat

FIG. 2. Equilibrium relaxation timet as a function of inverse
temperature 1/T, for values of the asymmetryb51/2 ~FA model!,
1021, 1022, 1023, 1024, 1025, and 0 ~ACIC model!. Top right:
rescaled timeb(12b)t against 1/T. Bottom right: effective activa-
tion barrierDE as a function of 1/T. Black squares on the curve
indicate the values of 1/Tc(b) expected from Eq.~3!. Simulations
were performed for system sizes that varied from 105 for high tem-
peratures to 53106 for low ones, and data points were averag
over 20 runs.
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which does not affect the 1/T2 behavior of the log oft.
The fragile-to-strong crossover can also be observed

the behavior of equilibrium dynamical quantities. The sim
plest one to study is the equilibrium persistence,P(t)
[N21c21( i^) t850

t s i(t8)&, which measures the fraction o
defects of the initial configuration that have never flipp
between times 0 andt. It is closely related to the equilibrium
autocorrelationC(t), but is free from the problem of the
recurrence of defects that makes the analysis of the la
more tricky, particularly in one dimension.

As mentioned before, in the asymmetric limit, the pro
ability to flip a defect depends on the distance to the nea
defect in the direction of the constraint. In equilibrium, th
probability distribution of these distances is independent
time. The persistence may be then approximated by the
of the independent exponential relaxation of defects at
ferent distances from their neighbors,P(t);ceqe

2t/t0

1(n51
` pne2t/tA

(n)
, wheret0;1 is the time scale associate

with the initial T independent transient, andpn5(1
2ceq)

2n21
2(12ceq)

2n
is the probability for a defect to hav

a chain of spins zero of length 2n21<d,2n next to it, which
takes into account the fact that the relaxation time for
corresponding distances istA

(n) . The equilibrium condition is
crucial to assume an independent relaxation of the differ
length scales. If the initial configuration is an out of equili
rium one, the probability distribution of distances evolves
time and the approximation considered is no longer va
For short times the persistence is dominated by the fas
exponential decay, leading to2 ln P;t/t̃ for low tempera-
tures, wheret̃[t0 /ceq defines the timescale for short time
The long time behavior may be estimated replacing the s
by an integral that is evaluated in the saddle point appro
mation, in a manner similar to that of Ref.@18#. As a result
we obtain a stretched exponentialP(t);exp@2(t/tACIC)b#,
with a stretching exponent

b5~111/T ln 2!21. ~4!

Notice that this is an alternative method to obtaintACIC to
the one of Ref.@10#. In the symmetric limit the persistence
simply the sum of the relaxation of defects with and witho
an up neighbor. At low temperatures it readsP(t)
;2ceqe

2t/t01(122ceq)e
2t/tS. The small time behavior is

similar to the asymmetric case, while the long time one
given byP(t);exp(2t/tS).

The behavior of the persistence forb51025 and b
51023 at different temperatures is shown in Fig. 3. W
present the data in a double log scale forP and a log scale for
t to display the different stretching exponents. As in the c
of the out of equilibrium relaxation, the decay is first dom
nated by the asymmetric process corresponding to the fra
regime. For short times it is exponential with a characteris
time scalet̃;e21, as described above. At longer times w
see a change of slope in the plot, which corresponds
stretched exponential behavior, with an exponent given
Eq. ~4!. The stretching region is larger for smallerb, as ex-
pected. The fragile-to-strong crossover then takes place,
the persistence becomes exponential again, now with a
5-3
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scaletS . In the insets we rescale time by a factor ofe to
superimpose the curves in the exponential regimes of s
and long times. The two limiting lines correspond
exp(2t/t̃) and exp(2t/tS).

We conclude with a comment on the explicit spatial asy
metry in the definition of the model studied here. It see
that to obtain other than strong behavior in systems w

FIG. 3. PersistenceP as a function of timet, for b51025 ~left
panel! andb51023 ~right panel!. Notice that we plot2 ln P(t) in a
log-log scale. The dotted lines are the expected stretching expon
b. Insets: same as main panels with time rescaled ast→te. Details
of simulations are the same as in Fig. 2.
.
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kinetic constraints it is necessary to consider cases in wh
spatial isotropy is explicitly broken, like in the ACIC@7# or
its generalizations, which is a rather unphysical feature. T
is also the case of systems with interactions, but which d
play a dynamical behavior similar to the spin facilitate
models@19#. The system considered in this work, howev
can be defined in an alternative but explicitly spatially sy
metric formulation, which also clarifies the relation betwe
the asymmetryb and the time scale and length scale at wh
the fragile-to-strong crossover takes place@20#. Considerb
as a collective fieldb(t) that takes values 0 and 1 with
characteristic time scale for flippingtb . The simplest physi-
cal choice for this dynamics would be a Poisson proce
b(t) may also have a spatial dependence, but on len
scales larger than the typical ones for the spin system. S
^b(t)&51/2 spatial symmetry is unbroken. The instantaneo
value ofb(t) is either 0 or 1, so for times smaller thantb the
behavior is that of the asymmetric case. For times mu
larger thantb the system effectively sees the average ofb(t)
and the behavior is the symmetric one.tb sets the time scale
for the fragile-to-strong crossover. This argument is eas
generalized to higher dimensions by considering a collec
vector field instead.
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